Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

6-(4-Fluorophenyl)-8-phenyl-2,3-dihydro-4H-imidazo[5,1-b][1,3]-thiazin-4-one: an unusual [6-5] fused-ring system

John F. Gallagher, ${ }^{\text {a* }}$ Marie-Delphine H. Le Bas, ${ }^{\text {b }}$ Claire M. Coleman ${ }^{\text {b }}$ and Donal F. O'Shea ${ }^{\text {b }}$ *

${ }^{\text {a }}$ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ${ }^{\text {b }}$ Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
Correspondence e-mail: john.gallagher@dcu.ie, donal.f.oshea@ucd.ie
Received 1 December 2006
Accepted 16 January 2007
Online 10 February 2007
The title compound, $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{OS}$, is the first structural example of a [6-5] fused ring incorporating the 2,3-dihydro$4 H$-imidazo $5,1-b][1,3]$ thiazin- 4 -one molecular scaffold. The six-membered 2,3-dihydro-1,3-thiazin-4-one ring adopts an envelope conformation, with the $\mathrm{S}-\mathrm{CH}_{2} \mathrm{C}$ atom displaced by 0.761 (2) \AA from the five-atom plane (all within $0.05 \AA$ of the mean plane). The imidazole ring is planar. The phenyl ring is twisted from coplanarity with the imidazole ring by $23.84(5)^{\circ}$ and the 4-fluorophenyl ring is twisted by 53.36 (6) ${ }^{\circ}$, due to a close $\mathrm{C}($ aryl $)-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contact with the thiazin-4-one carbonyl O atom. The primary intermolecular interaction involves a CH_{2} group with the F atom $[\mathrm{C} \cdots \mathrm{F}=3.256$ (2) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}=137^{\circ}$].

Comment

Heterocyclic compounds have been a traditional focal point for the development of new anticancer agents, with combinatorial (high-throughput) approaches to new ring systems being of current interest. In our research to develop new routes to diversely substituted drug-like heterocyclic scaffolds, classes of [5-5] [imidazo[5,1-b]thiazol-3-ones, (II)] and [6-5] [imidazo[5,1-b]thiazin-4-ones, (I)] fused-ring systems have been targeted (Le Bas et al., 2005; Le Bas \& O'Shea, 2005; O'Shea et al., 2006). The [5-5] imidazo[2,1-b]thiazoles have shown promise as anticancer therapeutics (Andreani et al., 2000). However, the isomeric imidazo[5,1-b]thiazole systems have only recently been investigated and a crystal structure reported [(IIa); Le Bas et al., 2005]. We report here the first structural example of a [6-5] imidazo[5,1b]thiazin-4-one fused-ring system, viz. the title compound, ($\mathrm{I} a$).

The molecular structure of ($\mathrm{I} a$) is depicted in Fig. 1, with the atomic numbering scheme, and selected bond lengths and angles are given in Table 1. Geometric data can be compared individually with different fused-ring systems. However, given
that the [6-5] fused-ring in (I a) is thus far unique, our focus is on comparisons with both the key ring systems, i.e. the

[5-6]
(Ia) $\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$
(lb) $\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}_{c}$
(Ic) $\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}$

[5-5]
$\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMc}$
(II a) $R=\mathrm{H}$
(IIb) $R=\mathrm{Mc}$
(IIc) $R=\mathrm{El}$
imidazole ring, and the [5-5] fused-ring relatives, (II). In (I a), geometric data for the diarylimidazole ring differ from the average values for imidazoles (Orpen et al., 1994). The $\mathrm{C} 1=\mathrm{C} 3$ and $\mathrm{C} 2=\mathrm{N} 2$ bond lengths of 1.365 (2) (longer) and 1.3023 (19) Å (shorter) differ, though not significantly, from the expected values of 1.36 and $1.313 \AA$. However, the three $\mathrm{C}-\mathrm{N}$ bond lengths for $\mathrm{C} 1 / \mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 3-\mathrm{N} 2$ are $c a 0.03 \AA$ longer $[1.4065(18) / 1.3986(18)$ and $1.3943(19) \AA$, respectively] than the corresponding average values in imidazoles (1.370/1.349 and 1.376 Å, respectively) (Orpen et al., 1994), reflecting the effect of the extra ring attached at $\mathrm{C} 1-\mathrm{N} 1$. The imidazole ring is planar, with all five atoms within 0.002 (1) \AA of the $\mathrm{C}_{3} \mathrm{~N}_{2}$ mean plane. The phenyl ring is twisted from coplanarity with the imidazole ring by $23.84(5)^{\circ}$, while the 4-fluorophenyl ring is twisted by 53.36 (6) ${ }^{\circ}$ away from the central ring due to a close contact with the thiazin-4-one carbonyl atom O1 and an intermolecular interaction with a neighbouring π-arene, $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{C} 24^{\mathrm{i}}$ [symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; Table 2].

Reactivity studies reveal distinct differences between the [5-5] imidazo[5,1-b]thiazol-3-ones, (II), and [6-5] imidazo[5,1b]thiazin-4-ones, (I a)-(I c). Firstly, ring opening by nucleophilic attack at the $\mathrm{C} 13=\mathrm{O} 1$ amide carbonyl group occurs relatively quickly (under mild conditions) for the [5-5] fused rings, (II), but only under more testing conditions for the [6-5]

Figure 1
A view of (I a), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
derivatives, (I). Secondly, H/D exchange occurs at the methylene H atoms in (II) at 323 K under facile conditions, but not for (I) under similar conditions (Le Bas et al., 2005). In order to rationalize these reactivity differences, the sixmembered thiazin-4-one ring in ($\mathrm{I} a$) is compared with the fivemembered thiazol-3-one ring in (II). The mode of amide bond reactivity of ($\mathrm{I} a$) is comparable with that observed for the hydrolysis and acyl transfer reactions of N-acetylimidazoles. This is attributed to the N -atom lone pair being part of the aromatic sextet, resulting in ineffective amide stabilization (Oakenfull \& Jencks, 1971; Oakenfull et al., 1971). This is further substantiated by the IR carbonyl stretch peak being observed at $1743 \mathrm{~cm}^{-1}$ for ($\mathrm{I} a$), which is considerably higher than expected for a typical amide (1630-1670 cm^{-1}; Williams \& Fleming, 1989) or six-membered lactam (1660-1690 cm^{-1}).

The main difference is the nature of the thiazol-3-one and thiazin-4-one rings, with ring strain evident in the former. In

Figure 2
An edge-on view of the [6-5] fused-ring system in (I a), highlighting the envelope conformation.

Figure 3
A packing diagram (with unit cell) of the hydrogen-bonding and contact geometry in the zigzag chain along (010) in (Ia). Only two Hatoms, H11A and H 22 , involved in these interactions and contacts have been included for clarity. [Symmetry codes: (i) $1-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, 1+y, z$; (iii) $1-x, y-\frac{1}{2},-z+\frac{1}{2}$.]
(II) (Le Bas et al., 2005), analysis of two related systems, viz. (II $a) /(\mathrm{II} b)$, at the bridgehead atom N 1 shows that all three C N bonds range from 1.391 (2) to 1.409 (2) \AA in (II a) and from 1.388 (3) to 1.407 (3) \AA in (II b), whereas in ($\mathrm{I} a$) a range of 1.3986 (18)-1.4243 (19) \AA reveals a distinct difference, with $\mathrm{C} 13-\mathrm{N} 1$ longer by $0.02 \AA$. In $(\mathrm{I} a)$, the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$ angle is 105.7 (1) ${ }^{\circ}$, and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$ and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 13$ are similar [126.40 (12) and $126.84(12)^{\circ}$, respectively], in contrast with the corresponding angles in (II $a) /(\mathrm{II} b)$ [106 and $115 / 138^{\circ}$, respectively], as $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 13$ opens up by 11° in ($\left.\mathrm{II} a\right) /(\mathrm{II} b)$ compared with the value in $(\mathrm{I} a)$. The $\mathrm{N} 1-\mathrm{C} 13=\mathrm{O} 1$ angles differ by 6°, with a value of $120.32(14)^{\circ}$ in ($\left.\mathrm{I} a\right)$ versus 126.0 (2)/126.7 (2) ${ }^{\circ}$ in (II $\left.a\right) /(\mathrm{II} b)$. Pyramidalization at atom N1 is negligible in both ($\mathrm{I} a$) and ($\mathrm{II} a) /(\mathrm{II} b)$, as all three angles sum to 360°. Reactivity could be attributed to the more open and accessible $\mathrm{N} 1-\mathrm{C} 13$ bond, and greater ring strain facilitates increased susceptibility to nucleophilic ring opening in (II a)/ (IIb). The H/D exchange at the CH_{2} group in (II) can be explained by the formation of a $10-\pi$ aromatic enol intermediate which facilitates the exchange mechanism, and this is not possible for (I) (see scheme below).

An edge-on view of the [6-5] fused ring in ($\mathrm{I} a$) down the $\mathrm{S} 1-\mathrm{C} 12$ axis is depicted in Fig. 2, showing the four-atom plane [S1/C1/C13/C12, atoms all within 0.005 (1) \AA of the mean plane]. The envelope conformation of the $\mathrm{C}_{4} \mathrm{NS}$ ring has atom C11 at the flap position displaced by 0.738 (2) \AA from the fouratom plane in the same direction as atom N 1 , which is displaced by 0.095 (2) \AA and oriented in the same direction. This envelope description is adequate, however, albeit with a small distortion towards a screw-boat; ring puckering parameters (Cremer \& Pople, 1975) are $Q=0.560$ (2) $\AA, \theta=$ $120.5(2)^{\circ}$ and $\varphi=122.85(18)^{\circ}$.

The primary intermolecular interaction involves a methylene CH_{2} group with a symmetry-related F atom, with $\mathrm{C} 11 \cdots \mathrm{~F} 1^{\mathrm{i}}=3.256(2) \AA$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~F} 1^{\mathrm{i}}=137^{\circ}$ [symmetry code: (i) $1-x, y+\frac{1}{2},-z+\frac{1}{2}$] (Fig. 3), in tandem with a C22 \cdots C 24^{i} contact (Table 2), generating a zigzag chain along the (010) direction. Given the paucity of structural data for this and related rings, we are now developing synthetic routes to new [5-5] and [5-6] fused rings with a view to comparing structural data with reactivity in order to gain a more complete insight into the chemical reactivity of these systems.

Experimental

Brief details of the synthesis of (I a) have been reported previously (Le Bas et al., 2005). The compound was recrystallized from ethanol
as a pale-yellow solid in 72% yield (m.p. 495-497 K). IR (KBr disc, ν, $\left.\mathrm{cm}^{-1}\right): 1743,1623 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.87(d, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.64(m, 2 \mathrm{H}), 7.41-7.44(m, 2 \mathrm{H}), 7.31-7.34(m, 1 \mathrm{H}), 7.05-7.10(m, 2 \mathrm{H})$, 3.27-3.15 ($m, 4 \mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-111 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $166.4,163.6\left(d, J_{\mathrm{CF}}=250.0 \mathrm{~Hz}\right), 149.8,138.4,132.6,131.6\left(d, J_{\mathrm{CF}}=\right.$ $8.6 \mathrm{~Hz}), 128.8,128.7,127.9,127.1,119.8,115.2\left(d, J_{\mathrm{CF}}=22.4 \mathrm{~Hz}\right), 37.3$, 26.0. $\mathrm{ES}^{+}-\mathrm{MS}: ~ m / z 325(M+\mathrm{H})^{+}$; HRMS found: $323.0641(M-\mathrm{H})^{-}$; $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{OS}$ requires: 323.0654 . Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{-}$ $\mathrm{FN}_{2} \mathrm{OS}: \mathrm{C} 66.65, \mathrm{H} 4.04, \mathrm{~N} 8.64$, S 9.89\%; found: C 66.42, H 4.01, N 8.54, S 10.07\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{OS} \\
& M_{r}=324.36 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.5195(13) \AA \\
& b=8.6516(7) \AA \\
& c=15.9173(11) \AA \\
& \beta=109.865(5)^{\circ} \AA \\
& V=1492.0(2) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.444 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=294(1) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.45 \times 0.45 \times 0.35 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker $P 4$ diffractometer
ω scans
4084 measured reflections
2938 independent reflections
2501 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\text {max }}=26.1^{\circ} \\
& 4 \text { standard reflections } \\
& \text { every } 296 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.093$
$S=1.04$
2938 reflections
208 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0448 P)^{2}\right. \\
+0.38 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C1	$1.7392(15)$	$\mathrm{N} 1-\mathrm{C} 13$	$1.4243(19)$
S1-C11	$1.7986(17)$	$\mathrm{O} 1-\mathrm{C} 13$	$1.1976(19)$
C11-C12	$1.512(2)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.365(2)$
C12-C13	$1.498(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.3023(19)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4065(18)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.3943(19)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.3986(18)$		
			$98.08(7)$
S1-C1-N1	$122.92(11)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 11$	$111.10(13)$
S1-C1-C3	$130.76(12)$	$\mathrm{S} 1-\mathrm{C} 11-\mathrm{C} 12$	$115.87(14)$
N1-C1-C3	$106.30(12)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.32(14)$
C1-N1-C2	$105.70(11)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{N} 1$	$123.08(15)$
C1-N1-C13	$126.40(12)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 12$	$116.59(13)$
C2-N1-C13	$126.84(12)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 12$	
			$-10.0(2)$
N1-C1-S1-C11	$20.39(14)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 12$	$9.9(2)$
C1-S1-C11-C12	$-52.19(13)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$	$-53.1(2)$
S1-C11-C12-C13	$61.22(18)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 26$	$-22.5(2)$
C11-C12-C13-N1	$-27.8(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 31-\mathrm{C} 32$	-

Table 2
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{~F} 1^{\mathrm{i}}$	0.97	2.48	$3.256(2)$	137
C22-H22 C^{i}	0.93	2.85	$3.753(2)$	164
C32-H32 N 2	0.93	2.58	$2.896(2)$	100
C36-H36	0.93	2.67	$3.3078(18)$	126

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

In ($\mathrm{I} a$), all H atoms bound to carbon were treated as riding atoms, using SHELXL97 (Sheldrick, 1997) defaults for $\mathrm{C}-\mathrm{H}$ bond lengths (range $0.93-0.97 \AA$), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methylene H atoms or $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms.

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and SORTX (McArdle, 1995); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks Dublin City University for the purchase in 1998 of the Siemens $P 4$ diffractometer and computer system. The synthetic research was funded by Enterprise Ireland and PRTLI-3 (Programme for Research in Third-Level Institutions) administered by the Higher Education Authority, Ireland.

[^0]
References

Andreani, A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Recanatini, M. \& Garaliene, V. (2000). Bioorg. Med. Chem. 8, 2359-2366.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Le Bas, M.-D. H., McKinley, N. F., Hogan, A.-M. L. \& O'Shea, D. F. (2005). J. Combin. Chem. 7, 503-506.

Le Bas, M.-D. H. \& O'Shea, D. F. (2005). J. Combin. Chem. 7, 974-951.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Oakenfull, D. G. \& Jencks, W. P. (1971). J. Am. Chem. Soc. 93, 178-188.
Oakenfull, D. G., Salvesen, K. \& Jencks, W. P. (1971). J. Am. Chem. Soc. 93, 188-194.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation, Vol. 2, Appendix A, edited by H.-B. Bürgi \& J. D. Dunitz. Weinheim: VCH.
O'Shea, D. F., Le Bas, M.-D. H. \& Mueller-Bunz, H. (2006). Unpublished results. University College Dublin, Ireland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Williams, D. H. \& Fleming, I. (1989). Spectroscopic Methods in Organic Chemistry, 4th ed. London: McGraw-Hill.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3028). Services for accessing these data are described at the back of the journal.

